SUPERBASE NG IDE

Quick Start Manual

JUNE 21, 2018
SUPERBASE SOFTWARE LIMITED

Contents

1T T T T3 2
Getting Started with the Superbase NG IDEccccciiiiiiiiiiiiiiiinn, 3
Creating QU FIrSt PrOJECE oo e e e e e e e e e e e 4
WIITING OUE FIrSt PrOZram ... e eieieiiii e ettt ettt et e e ettt e e e e s s sttt e e e e e s s nsbeeeeeeeeesanannneaeeeens 6
Building and Testing OUr FIrSt PrOSIamc.uuieiiiiieie ettt e ecitee e ectee e e stee e e s itee e e s ate e e s ensaee s ensaeeseareeas 8
Making Incremental IMProVEMENTSciiiiciiii it e s sbee e s e e e s s sbeeessnnreeas 12
SUIMIMIAINY e e e e e e e e e e e e e e e s e e e e e e s e e e e e s s e e e e e eaesaaasasasasasasasasssssssasssssessssssssssessessssesssseesneesennenns 17
Writing Web Server Programs With SIMPOLccciuiiiiiimniiiiiniiiiiniiimiemsmiseees 18
ConVerting OUI PrevioUS PrOjJECT....couui it e e e e e e e e e e e e e e e 18
Preparing the Web Server to RUn SIMPOL Programscccueeiieieeesiiieeeseieee e esieee e ssveee s ssveee s s 21
Getting and INSTAllING AMPPS ... ettt e e et e e e et e e e e satt e e e esasaeeeensaeeesanssaeanan 22
Using a Web Server Other Than ApPache..... ..o 22
Configuring AIMPSS APACNEviiiieiiie ettt e et e e e e et e e e e ataeeeesasaeeesntaeeesansrneeaan 22
Restarting the APache WED SEIVEN ...t e sree e e sbee e e e nreeas 25
Debugging and RUNNING YOUI PrOSram........c.cciiiiiuieeieeiieeeeeitee e eettee e eevte e e eetae e e eeabeee e esataee s ennraeaeenrenas 26
SUIMIMIAIY e e e e e e e e e e e e e e e e e e e s e e s e s e s e e e e e e s s e seasssaaasssasssasasaassssssssssasasasasssnsssssnssansnsnsasesnnns 29
Debugging Into Library SOUrce Codeiimmmmiiimimeiiiiieneiciiienecerrensessrensseesnenssesssenssesssennsasssennnes 31
DEDUEZEING REVISITEU. .. .viiiiiiiie ettt e e e e e e st ee e e et ee e e eeabeee s esabeeesennbaeeesnnsenas 31
Adding LiDrary SOUICE COUE.......uuiiiiiiiiee ettt ettt ettt e e et e e e etae e e e e are e e e e abe e e s entraeesenbeeeeenseeeeennsenas 31
ReMOVING Library SOUICE COOEuuiiiiiiiiiiiiiiie e ccitee ettt et e e e etee e e e bee e e et ee e s e sabeee s ssnbeeeaenareeas 36

SUIMIMIAIY e s eeaaasaeeseeasaeeaasaaaaasaaaaeeasaaseeasaseeesesasesaeaeeeeeesanaeens 36

Introduction

This book is intended to provide a quick start guide for using the new Superbase NG IDE.
Although in the process some SIMPOL programming is covered, that is not the primary
purpose of this book. Other books are provided that cover SIMPOL programming.

The parts that follow will describe the use of the IDE for programming standard applications
that are run at the console and from within the IDE and also cover the creation of web server
applications together with information about downloading and installing a web server. We
will use AMPPS as it is an easy out of the box Apache server. Although it is not necessary to
use Apache to deploy the resulting programs, Apache is an excellent web server and the
debugging of web applications in the IDE is currently only supported using CGI, not using
the ISAPI or Fast-CGI methodologies.

A large number of screen shots are used to explain the material and a step-by-step approach is
taken with respect to the actual creation of the programs. Please take the time to work
through the tutorials for the various programming styles. It will be time well spent.

Getting Started with the Superbase NG
IDE

When the Superbase NG Integrated Development Environment (IDE) first opens you will see
a picture similar to the one below:

E |

ioasls | e [

Figure 1 Initial State of the Superbase NG IDE

Let's take a look around the interface and examine the various features. At the very top is the
menu, and directly below that the toolbars. Although the menu is fixed, the toolbars are
dockable and can be placed in various locations in the main window frame. In the upper left
corner is the project window, which provides two different views of the project, the file view
and the type view. To the right of that is the editor area which is an MDI area. Multiple
source code and other document windows can be opened in this area. If they are maximized
they can still easily be reached by clicking on the tab at the bottom of the area that represents
the desired window (this will be seen later). Below that is the output panel, which contains
the various output areas as separate tab regions within the same area. This panel is where the
results of a compilation or the running of a program can be found. In the middle there are the
Watch and Call Stack panels. On the left is the variable and object Watch panel. Unlike many
common watch windows, this one always shows all of the variables for the current function
once the variables have been declared in the flow of the program. The Me tab is provided so
that the object passed to an event procedure can be examined easily (it does not need to be
called e in the function declaration). The last panel we see is the Call Stack panel. This
panel shows the current state of the program in reverse order. In other words, if the program
started in the main () function, and then called the init () function, which called the

init databases () function and we stopped execution within the last function then the Call
Stack panel would show the three functions in the reverse order that we called them. Also, the
Watch panel would contain the current state of the variables in the init databases ()
function. If we then clicked on one of the earlier functions, the Watch window would then
show us the state of the variables in that function.

The IDE is a very flexible environment and it is easily adapted to look the way any one
person wishes to work. Panels can be turned on or off, they can be resized and rearranged.
The toolbars can also be moved, undocked an arranged in a different manner that may better
suit the user.

Now that we have had a look around we will, in the next section, build our first project, a
very basic program that is designed to teach us more about the development environment.

Creating Our First Project

To create a new Superbase NG project, select the New Project from the File menu. At that
point, the following window will be shown:

Mew project options =

Pioject Dlulpt Teps Proect Sounce Code Typs
LI - am] I* am
Frogect kcstion
ICASIMPOLY
Fropeect neaime B

™ ‘Weapper aver SIMPOL code lie

[T G propsstes om prosect

0 Cancel |
Figure 2 The New Project Options window

In this window we define the project name, project output type (sml or smp), source code file
type (sma or smu), where the project should be located and what it should be called. The
options in the lower half of the window are advanced options that we won't cover at this time.
In this example we will select the smp and sma options. The sml option is for producing
compiled libraries of types and/or functions for use by yourself and others. The smu
extension is for creating Unicode source files rather than ANSI ones. In the following
examples we will only use the ANSI source file types. Unicode can be very useful when
working with characters from multiple code pages, such as mixing Greek and western
European languages, but is not available when working with Windows 9x and is therefore not
appropriate as the standard type for source files when supporting all platforms.

For the purposes of our first example, select the smp and sma options. Now click on the ...
button next to the Project location box. Beneath the projects directory if no directory called
"tutorial" is present then please create one using the Make New Folder. Once a tutorial
directory exists below the projects directory, select it and click on the OK button. In the
Project name box enter learn01. Do not add any extension to this, the resulting program will

be called 1earn01. smp, the main source file 1earn01.sma and the project directory learn01.
See the picture below for details:

T
| Mew project options x

- Prescd Ouipel Typpe————— |~ Proweet Source Code Tyoe—
| Gwp o || Gme o |

Pregect oz ation

|EASIMPOL peopscts usanad J
Project rme:
[iwamini

[~ Wrappe: over SIMPOL code fle:

| |

r-supmmm
| i
Lo | coes |

Figure 3 The New Project options window with the
correct input for learn01

Clicking on the OK button will create a new project with the name "learn01". The project
will be opened, the main source file will be created, and the result will look something like
the picture below:

;[N ST S p—" []
e (55 o= (o Frjmb Oog Toh eis iy
DOFE@ e @ THRed (v BREE AR08 EEL0 e RFdae --..'ﬁ--.

A [Fims | | it o |
A= B j' ki

W W Leoek [I8 | |

Bruriesing Passhisn, aed svim AnBesmatasn oo
Secceppfilly rerrieerd Smetice aed type LaPssmeries

L

0 e (g] P Bl
Busks [TRE]

Figure 4 The Superbase NG IDE with the learn01 project created

Now that we have a project we can start writing the program code.

Writing Our First Program

The first program will be a very easy one with very little real purpose beyond demonstrating
various capabilities of the development environment. Although the "Hello World" program is
quite traditional, for this example we have chosen to create a program that outputs the current
date and time. This has the necessary flexibility that is required for our demonstration. The
source code in its entirety is shown below:

function main ()
datetime dt

dt =@ datetime.new ()
dt.setnow ()

string s

s = .tostr(dt.year(), 10) + "/" 4+ .tostr(dt.month(), 10) + \
"/" + .tostr(dt.dayinmonth (), 10) + " " + \
.tostr (dt.hours (), 10) + ":" + .tostr(dt.minutes(), 10) + \

":" + .tostr(dt.seconds, 10)

end function s

Please type the program in, don't copy it from this document. The process of entering the
source code will demonstrate a number of the features that we will discuss as we continue.

As you type in the first part of the code, as shown in the following picture, a number of things
may occur to you. First, the various words and punctuation in the program appear in different
colours. Color-coding of the source code is quite common today and assists the reader in
immediately being able to focus on the parts of the program that are of interest as well as
visually pointing out when things may have been done incorrectly. Which colors are used for
what parts of the programming language are user-configurable. By default, language
keywords appear in blue, identifiers in black, strings in red, data types in cyan, operators in
magenta, and comments in green.

€

-mlkwl’ﬂ e

Figure 5 Showing the autcomplete functionality within SIMPOL

The picture above shows the inline programming help for the datetime type. Since the new()
method is the only item in the list, it is already pre-selected. Press the tab key to
autocomplete, the highlighted text will be entered at the current cursor position. This feature
can greatly reduce the time it takes to write programs, as well as reduce the number of typing
errors made.

When typing the open parentheses next to a method name, such as new, the inline help will
show the arguments for the call to the method, as seen below

fuBction mEIn

dc

de

integer datetime

L 4

P ieam - l

Figure 7 The inline help for the new() method

function main|()
tecime dt

dt =@ dat=tim=.new|()
de.|

* davinmonth

* dayinweek

* dayinyear

* hours

* microseconds
* milliseconds
* minutes

* month

* seconds

¥ get

* setnow

- type

* year

<

leam01 *-le...

Figure 6 The inline help for the datetime object

Even when using a variable that is declared to be of the type datetime such as in our program
the properties and methods of the object are shown by the inline help while typing the code.
To select a different one than the first, just type the first one or two letters until the correct
one is selected and then press the tab key to have the rest of the item entered at the cursor
position.

Every component in SIMPOL has inline help. In some cases, like that of functions, the help
only shows which parameter is current and needs to be filled out as well as information about
its data type and possibly the parameter name and default value.

Now enter the remainder of the program as shown in the earlier source code excerpt. Once
the entire source code has been entered, it should look like the following picture. At this point

we are ready to build and test the project.

function main ()
= dt

dt.setnow ()

s

end function s

<

dt =@ datetime.new()

s = _tostr(dt.yearl),
n/m + .tostr(dt.dayinmonth(),
tostr (dt.hours (), :

":" + .tostr(dt.seconds,

" 4+ .tostr (dt.month(),

" + .tostr(dt.minutes(),

Eﬁbam01’d&"

Figure 8 The complete source code for the first project

Building and Testing Our First Program

The next step is to compile the program and then we can run it. To build the program, select
the Build item from the Project menu as shown below. (Alternatively press Ctrl+B)

E |
= e

' il Ty}, P vt [

Figure 9 Building the first project

The compilation succeeded as can be seen in the output window:

i
JREtriev1ng function and type information
Successfully retrieved function and type information

Begin postprocessor...

Warning: Type method not followed by '(' in the following line:
C:\S5IMPOL\projects\tutorial\learn0l\learn0li\learn0Ol.sma(9): dt.seconds
End postprocessor

Successfully built

TR l-\‘{)utputﬁ[?_ﬂbug)\':h!d‘ﬂﬁk.‘!

Figure 10 The first project successfully compiled

For now we will ignore the warning from the post-processing code, but normally it is a good
idea to try and deal with all of the warnings since they can otherwise result in runtime errors
in the program. Now we can execute the program by either selecting the Execute item from
the Project menu, or else by pressing CtrI+E. As we can see from the picture below, the
program had an error while executing.

--------------------- 12:59:35 20/06/2018 =—=—=—=———mmmmm—m—e—ee

Executing "C:\SIMPOL\projects\tutoriall\learnOi\bin\learnOl,.smp" ...
Exrror (40): Incorrect parameter type

4 4 b b\ output { Debug } FindinFiles [

Figure 11 The first project fails with an error

Now that we have had an error, it is time to start up the debugger. Select the Start Debugging
item from the Debug menu. This can also be accomplished by pressing the F4 key.

Eﬂ File Bl Wes Dotumest Pogesd Debug | Teslh Wintes Help
Ok d @ @ T4 Db L
da | - rom ek
_! - Tt wail Demrin
| Ll sk Til iLsummi .
] ol

mywrts Fampos Bresszoim =1
I pe—

Bt ahgaing Lot an
i "

Faphle

af v e [MEimven | | [et s

Figure 12 Starting the debugger

When the debugger starts, it first checks to see if the program has changed since it was last
compiled and, if necessary, saves the project (if that is one of the settings) and recompiles the
project. Then it initializes SIMPOL, loads and starts the program, and breaks execution on
the first statement following the declaration of the main () function, as shown below:

<<<=<< DEBUGGING. Focusinthread 1 >>>55]
it Debug Tools Window Help

'R |2 MRA AR HED o BPEFVO T EEES

newi()
=
s = .tostr(dt.year(),) + "/" + .toatr(dt.month(),)
"/" + .tostr(dt.dayinmonth(),] #® = \
.tos3tz (dt.hours|(),) + ":" : _tostr(dt.minutes|(),)

str (dt.seconds,)

<

[ieam01 -lear...

Figure 13 The debugger stopped on the first statement

To single step through the code, press F10. We will eventually get to the line shown in the
picture below:

E |
v B [} iap T .y

FEQ LuE @ TRed | © o aE e - L=

"
| e
[
-
2 v W5 B i . |
g i

iaawls | g [i

Figure 14 The debugger stopped on the last statement inside the function

Pressing the F10 key once more will result in a pop-up displaying the error message, it
should look like this:

Error "

0 Debuggang exetution returns the lollowing metzage
Errgr MOy ncomett parameler type

=
Figure 15 The error message pop-up

The error number is 40, "Incorrect parameter type". If we take a closer look at the source
code, we can see that the first parameter to the . tostr () in the final segment of the last
statement is dt . seconds. The error here is the missing parentheses, since seconds () is a
method of the datetime type, not a property. Let's now change the source code to the correct
syntax.

This is done by adding some brackets after dt . seconds the line should now look like this:

s = .tostr(dt.year(), 10) + "/"™ + .tostr(dt.month(), 10) +"/" +
.tostr(dt.dayinmonth (), 10) + \
" " 4+.tostr(dt.hours(), 10) + ":" + .tostr(dt.minutes (), 10) +":" +

.tostr (dt.seconds (), 10)

We can now rebuild (Ctrl+B) and execute (Ctrl+E) the program. This time the program runs
successfully without errors:

Successfully built

————————————————————— 13:08:12 20/06/2018 —————m———me————————
Executing "C:\SIMPOL\projects\tutorial\learn0l\bin\learn0l.smp"™ ...
————————————————————————— program result ————-———m—m—m—m—mmm— e

Successfully executed

: \Dul‘put ."{. Debug }\ Find in Files /

Figure 16 The program has run successfully
The date and time displayed will of course not be the same

Upon careful examination of the output from the program, however, we can already see that
there is still some improvement that can be made over the current version. The program
output the string 2018/6/20 13:8:12. Although the date might be considered acceptable,
the time is certainly not going to be acceptable in the current format by most people. In the
next section we will improve the current program by making incremental improvements and
by making use of supplied library functionality that itself was written in SIMPOL.

Making Incremental Improvements

The reason why the initial version of our program, though functional, was not acceptable is
that the output was not formatted in a way the user may expect or desire. Part of the reason
lies in the fact that to start with, we used the SIMPOL intrinsic function . tostr(). Although
this function is quite useful, it is a fairly low-level function and does not provide a wide
degree of flexibility when formatting the result. For that reason, early in the development
cycle of SIMPOL, additional functions were written using SIMPOL itself to provide that sort
of functionality.

There is currently a large and ever-growing library of pre-designed functionality supplied
with SIMPOL and in most cases the fully commented source code of the library is also
provided. Pre-compiled libraries are located by default in the 1ib subdirectory of the place
where Superbase NG was installed. Projects are normally located in the Projects directory
also located directly below the root directory of the installation. The source code for the
various supplied libraries can be found in the Libs directory located directly below the
Projects directory.

In order to improve the output of the program, we can use the sTr() function found in the
sTR.sml library file. This function includes the ability to format strings in exactly the same
ways as those supported by the previous Superbase product, except currently for a lack of
support for scientific notation, which will eventually also be supported. To access the
functionality in this library, we first need to add it to the project. Select the Settings item from
the Project menu.

._P supertate NG 1DE - [leaml - leamil]
E_ﬂ Eile Edit Ywew Qocument Propect Debug Toods Yindow Help
D& BER £ Build CrleB | @
Rebuald All Cirl=#
; E eamllem Evecute Ciri=E
Imamdil s ey Bissied
= leam01 sma
Refresh Docurnents
Settings

Figure 17 Opening the Project Settings window via the menu
This will display the Project Settings window.

Project Settings s

Gerawal | inciudes and tixeries | Targets | CGI

Comarnd fine SIMPOY componants
| [Activain J'Carrrrnmnl -
2 5 9 |
e e |
Chutpur fie " mep, * ami | i
IC\SIMPOL yproiacts dutonal sami D bin Yesm{1 s | foari
adbe
Source code fle prelesence Project sulpul tips | prcs
* gma] % amp ™ il | PR
| J ! thme= :
Mphe Fie | w b - |

Figure 18 The Project Settings window

This window is extremely important for creating powerful and successful applications using
SIMPOL. The initial tab allows the setting of the source code file preference, assigning of
command line parameters when running and debugging in the IDE, and also provides a
method of selecting the SIMPOL components required by the project. If a component is
required but not selected, then it will not be available at runtime nor will the inline help
assistance work for the associated types and functions.

The second tab provides a place to define two important areas, on the left is the place that the
include directories are added (where the compiler will look for included source code files
during compilation) and on the right is the list of pre-compiled SIMPOL modules (*.sml's)
that are to be added to the project.

Project Settings x

General h"'3‘“‘:"3‘3t‘ii‘“ﬂﬁl’l‘é\l"ﬁs]Ta'u;eﬂ;'CGl 1

include Folders: Add | Remove | ("smi) Librariesto link: Add | _ Remove

SIMPOL components: sml use

I

ok | cancel |

Figure 19 The Project Settings Includes and Libraries tab

Click on the Add button on the right side of the window and from the resulting file selection
window, go into the 1ib directory and select the file STR. sm1.

=H Select SIMPOL SML File X
Lookin: | . ib > « @ ck E-
Name a Date modified Type Size L
|] sortlib.sml 02/03/2016 13:32 SML File 19 KB
| | soundiib.sml 01/02/2016 17:26 SML File 2KB
L] sqit.smi 19/07/2017 19:03 SML File 165 KB
i| |str.sml 21/07/2016 21:02 SML File 3KB |
|| stringlib.sml 18/06/2017 17:15 SML File 21KB
| | tableview.sml 19/07/2017 19:07 SML File 631 KB
|| timer.sml 01/02/2016 17:33 SML File 2KB
™ R | AN AT RS 4990 [of W LI o 1 ¥n L
File name: |str
Files of type: [SIMPOL SML Compiled Files (.smi) -] Cancel

Figure 20 The file selection window for STR.sml

The project settings menu should now look like this

Project Settings *

General Includes and lbraries | Targets | CGI |

Include Folders: Add | Remove | (* smi) Libraries to link: Add | Remove
[CSIMPOL b str sml

SIMPOL components: sml use

[

ok | cance |

Figure 21 Project Settings Includes and Libraries tab with STR.sml/

Once the library has been added to the project, we can add a declaration for the type
SBLNumSettings, which is necessary in the SIMPOL version of this function because unlike
in SBL and other BASIC derivatives, there are no pre-defined global entities such as
Superbase.NumericFormat. As can be seen from the following picture, the inline help also
supports user-defined objects and functions. In this case the new() has been implemented in
such a way as to allow default values for the object which the user can override by passing in
other values.

function main|()
iatetims dt

dt =@ datecim=.new|()
dt.setnow()

ns =:@ SBLNum ---;:j'.new1
acring 8C5 = £
- string alIs = ,;
3 = .tostridt.yeazx()., } false
"/" + _tostr(dt.dayin
.tostr (dt.houral(),
M:¥" <+ .tostr(dt.secon

end function =

<

leam01 * —Ie...|

Figure 22 The inline help for the SBLNumSettings type

Continue modifying the code until it matches the source code below. We will replace nearly
all instances of the function . tostr () with the function sTr (). This will give greater
flexibility when formatting our numbers.

function main ()
datetime dt
SBLNumSettings ns
ns =@ SBLNumSettings.new ()

dt =@ datetime.new ()
dt.setnow ()

string s

s = .tostr(dt.year(), 10) + "/" 4+ STR(dt.month(), "00™) + "/" + \
STR (dt.dayinmonth (), "00", ns) + " " 4+ STR(dt.hours(), "00", ns) + \
":" + STR(dt.minutes (), "00", ns) + ":" + STR(dt.seconds (), "00", ns)

end function s

Notice the use of the forward slash (\) in order to carry on a declaration over a line

Now we can rebuild the project by pressing Ctrl+B. Assuming that no typing mistakes were
made and that it builds successfully, pressing Ctrl+E should successfully run the program
and show the results in the output window, which should look something like the following
(obviously the actual date and time will differ).

x|
L4

Successfully built

————————————————————— 14:13:59 20/06/2018 —m———m——mmm—— e
Executing "C:\SIMPOL\projecta\tutoriall\learn0l\bin\learnOl.smp"
————————————————————————— program result ————————m————————————————

Successfully executed

* \ Output { Debug }, Findin Files [
Figure 23 The output from the modified program

This time around the result looks much more reasonable than the earlier version. This
solution still leaves some open issues, such as dealing with date formats that use the name or
the abbreviation of the month and the am/pm style of time. The solution to this is to use more
appropriate functions for the formatting of the date and time. As it turns out, just as there is a
STR. sml there is also a library called SBLDateLib.sml and another called
SBLTimeLib.sml, both of which were written in SIMPOL and for which the source code
is provided. These libraries are intended to be directly compatible with the older SBL
functionality and they contain functions that are in all capital letters, such as DATESTR (),
MONTHSTR (), TIMESTR(), and others. As the development of SIMPOL progressed we
created numerous libraries that reproduce the functionality from SBL as well as producing
more modern versions of some functions. For example, one of the functions included is the

LTRIM () function. This function is a drop-in replacement for the SBL function of the same
name. There is also a function supplied called 1trim (). This function is a bit more
sophisticated than the SBL version, in that it not only trims spaces, it also trims tab characters
and can be passed a string parameter to optionally trim any character contained within that
string so that the user can choose which characters should be trimmable.

Let's make some final improvements to the program. Reopen the Project Settings window via
the menu and in the Includes and libraries tab remove the sTR.sm1 and select instead the
SBLDateLib.sml and SBLTimeLib.sml from the lib directory. The Project Settings
window should look like this:

Project Settings X |

General Includes and libraries | Targets | CGI |

Include Folders: [Add | Remove | (smi)Libraiestolink: Add | Remove

[C\SIMPOL\ib\sbldatelib smi
CASIMPOLNib'\sbltimelib .smi

SIMPOL components: sml use

ok | cancel |

Figure 24 Project Setting Includes and Libraries tab for new version of learn01
Now modify the source code to make use of these new libraries as follows:

function main ()
datetime dt
SBLlocaledateinfo ldiLocale
integer iMicrosecondsinaday

ldiLocale =@ SBLlocaledateinfo.new ()
iMicrosecondsinaday = 60 * 60 * 24 * 1000000

dt =@ datetime.new ()
dt.setnow ()

string s

s = DATESTR (date.new(dt/iMicrosecondsinaday), "mmmm dd, yyyy", \
ldiLocale) + "™ "™ + \
TIMESTR (time.new (dt mod iMicrosecondsinaday), "hh:mm:ss.s am")
end function s

This time after building and executing the program we can see that we are now able to finely
control the formatting of the output.

x|
—jSuccessfuLly built

Executing "C:\SIMPOL\projects\tutorial\learn0Ol\bin\learnOl.smp"™ .
————————————————————————— program result ————————————————————

June 20 2018 2:19:50.134 pm

Successfully executed

Summary

In this part we have learned how to:

e Create a new project in the IDE

e Make use of the inline help

e Build and execute a project

e Debug a project

e Work with SIMPOL libraries (*.sml)

In the next part we will take our current project and learn how to modify it to output the
results in a web page as a web server application.

Writing Web Server Programs With
SIMPOL

In the previous part, we built our first basic program in SIMPOL and learned how to use the
IDE to do various tasks. In this part, we will take that project and convert it into a web server
application to output the same information to a web browser.

Converting Our Previous Project

As a first step, we can save our project from the first part as a new project. To do so, open the
first project in the IDE and then select “Save Project As ...” in the File menu
=B Suparbase NG IDE - [earnD1 - leami1]
D Ble Edit View Document Project Debug Tools
C New Ctrl=M h D)

Open... Ctrl=0

Clote functicn me

Mew Pregect
Cpen Project
Close Progect 1di :
Save Project As... iMiorome:
Save Cirl+5 ar

Save Al dt . sstna
Save All

Prnd... ChisP
Pont Preview
Prnt Setup.. TIMES

Hecent iFiles 3 and functic

Fecent Progectspace

4 st - lea I
. Exit

Figure 25 Saving the project with a different name

Then give the new project the name 1earn02 and select the tutorial directory as the place
to store it. This will create a new project called learn02 with a main source file called
learn02. sma.

include "htmlheaders.smaﬂ

=] leamz. smj
= leamdz]])]
= Eﬁ leami? sma functlup mainicgicall ogil
m htrlheaders. zma datetime do

3BELlocaledateinfo ldiLocale
integer iMicrosecondsinaday

ldiLocale =@ SBLlocaledateinfo.new()
iMicrogsecondsinaday = * * *

dt =@ datetime.new()
dt.setnow(]

string =
2 = DATESTR (date.new(dt/iMicrozecond]

TIMEZTR (time.new(dt mod iMicrose
end function s

Figure 26 The Project View for learn02

Now start modifying the source code. Add a cgicall cgi parameter inside the parentheses
of the main() function. Then add the include statement at the top as shown below and press
Ctrl+S to save the document. The result should look something like the following picture:

Note that the IDE has added a document as a child to the main document of the project but
that the icon for the document has a red X through it. This is because at this point the project
does not have any idea where to look for the include file. To fix this, let's open the Project
Settings window again and switch to the Includes and libraries tab.

;“Proj ect Settings X

General Includes and libraries | Targets | CGI |

Include Folders: Add I Remove] (*.sml) Libraries to link: Add ‘ Remove

|C:A\SIMPOL\lib\sbldatelib.sml
CASIMPOLVib\sbitimelib smi

SIMPOL components: sml use

"Figure 27 Adding an include path

Now click the Add button on the left side of the window and select the inc1ude directory as
highlighted below:

Browse For Folder X
Choose & File Folder

v SIMPOL A
bin
docs
include
lib
Linux
projects
redist
resources &

wokeNewrdder | [k]| Conce

Figure 28 File browser showing include folder

Press OK, the window should then look like the one below

Project Settings x

General hdt'deﬁaﬂdlibm]TauetsICGl |

include Folders: Add | Remove | (*sml) Libraries to link: Add | Remove

CASIMPOL\Ninclude\ [C\SIMPOL \ib'\sbidatelib_smi
CASIMPOLNib\sbdtimelib smi

SIMPOL components: sml use

OK Cancel
I |

Figure 29 The include path has been added

After clicking on OK the icon that previously was marked with an X is now back to normal.

Now double-click the included file and copy the constant value sHTML HEADER to the
clipboard so that you can paste it into the main program file. The constant value can be used
as long as it has been defined prior to it's being used. Since the SIMPOL compiler is a single-
pass compiler, that means that the file containing the constant needs to be included at the
beginning of the program.

% P e ["-‘ = | fweril e [T e |

Figure 30 Opening the included file

At this point we need to add the code that outputs the HTML page to the browser. Generally
the second parameter to the output() method of the cgicall type will be set to 1, since
currently most protocols require single-byte characters. The first thing that needs to be output
is the header (unless you are using cookies, then they have to be first). After that the normal
HTML code is output.

Now complete the code as shown below. The final argument following the end function
statement is the empty string. This is because if it is not set to the empty string, the string
representation of the value .nul will also be returned at the end of the HTML page.

include "htmlheaders.sma"

function main(cgicall cgi)
datetime dt
SBLlocaledateinfo ldiLocale
integer iMicrosecondsinaday

ldiLocale =@ SBLlocaledateinfo.new ()
iMicrosecondsinaday = 60 * 60 * 24 * 1000000

dt =@ datetime.new ()
dt.setnow ()

string s

s = DATESTR (date.new(dt/iMicrosecondsinaday), "mmmm dd, yyyy", ldiLocale)
+u u+\
TIMESTR (time.new (dt mod iMicrosecondsinaday), "hh:mm:ss.s am")

cgi.output (sHTML HEADER, 1)
cgi.output ("<html><body>The current date and time are:" + s +
"</body></html>{d}{a}", 1)

end function ""

Preparing the Web Server to Run SIMPOL Programs

We recommend people use an Apache web server, if not for deployment at least for development.
We are going to be using a solution stack called AMPPS which contains Apache, MySQL, PHP and

various other services. There are other ways of installing Apache but these are outside the scope of
this basic introduction.

Getting and Installing AMPPS

AMPPS is freely available to download, the latest version is available from
https://www.ampps.com/download. Download and install AMPPS. Once you launch AMPPS
it will look something like this:

¢ ampps

Powered By Softaculo
HeAd

npacte {0}

wess L3

w3

C:fFrogeam Files [xB6) Araps
&pache started
My=Sql Started

Using a Web Server Other Than Apache

If you already have a web server running on your desktop, then you need to consult the
documentation for it to find out how to run CGI programs using it. If the server runs as a
service, you will need to open the Services applet from the Control Panel and then modify the
service entry for your web server to allow it to Allow service to interact with desktop. This is
needed if you wish to be able to debug your CGI programs in the Superbase NG IDE. Then
set it up to execute programs that end in the file extension . smp as CGI programs. This may
well need to know the location of the program used to run the applications and its name. The
name of the program varies, depending on whether you are debugging or not. See the
discussion of the Apache configuration below to learn about the various issues.

Configuring AMPSS Apache

Before we can run our program we also need to configure Apache. This section will discuss
the changes that need to be made to the httpd.conf file.

Note

This section describes the minimal configuration required to develop and deploy web
applications using SIMPOL and should not be considered to be a replacement for reading
and understanding the documentation of the web server! Deploying a web server can be a
complex operation depending upon the level of use it is expected to sustain. There is an

https://www.ampps.com/download

entire branch of the industry that handles the deployment and maintenance of high-
availability web servers for e-commerce sites. Please don't confuse basic configuration of a
single web server with the knowledge required to deploy a web server that should be
handling thousands of hits per second on a continuous basis.

After AMPPS has been successfully installed, we need to find the AMPPS directory, this is
normally found in: C:\Program Files (x86)\Ampps. In this directory there are a number
of folders and sub-folders that will interest us:

e Ampps > www > cgi-bin
e Ampps > Apache > logs
e Ampps > Apache > conf

The cgi-bin directory is where our programs will normally reside. The 10gs directory is the
place where the access and error logs are stored. The error log will be very important when
trying to figure out why some program isn't working correctly. Often some useful
information will show up in the log, such as an error message from SIMPOL. Finally, and
what concerns us currently the conf directory is where the configuration files can be found.

To access the config files necessary simply right click on the httpd.conf file and open in a
text editor.

However, it is also possible to access the necessary configuration file for Apache from the
AMPPS client. To do this you go to the settings for the Apache web server (left click on the
gear) and then press the configuration button (as highlighted below)

¢ ampps

Powered By Softaculo

HO AL

Apache staneo

MySqf Started

MySg Started

Irternet connection could not be
estabdshed!

Figure 31 Config button circled

At this point you will have opened the httpd.conf file and are ready to configure the server

The first item to change is the serveradmin parameter:

ServerAdmin: Your address, where problems with the server should
be e-mailed. This address appears on some server-generated pages,
such as error documents. e.g. admin@your-domain.com

#

ServerAdmin johndoe@johndoe world.com

Set the serveradmin parameter to your email address (or to whomever should be handling
server problems).

The next parameter of importance is the servername parameter. For now, we will just change
this to 1ocalhost. This can and should be changed to something else if you wish to deploy
the server for more than development.

ServerName gives the name and port that the server uses to
identify itself. This can often be determined automatically, but
we recommend you specify it explicitly to prevent problems during
startup.

#
#
#
#
#
If this is not set to valid DNS name for your host, server-
generated redirections will not work. See also the

UseCanonicalName directive.

#

#

#

#

#

S

If your host doesn't have a registered DNS name, enter its IP
address here. You will have to access it by its address anyway,
and this will make redirections work in a sensible way.

erverName localhost

The pocumentRoot parameter should need no adjustment at this stage. You may wish to
experiment with it later.

The scriptalias parameter for the /cgi-bin/ directory is one of the more important
parameters for our project. That and the associated pirectory parameter should be set up to
look like the following:

ScriptAlias: This controls which directories contain server scripts.
ScriptAliases are essentially the same as Aliases, except that

documents in the target directory are treated as applications and

run by the server when requested rather than as documents sent to the
client. The same rules about trailing "/" apply to ScriptAlias

directives as to Alias.

#

S

criptAlias /cgi-bin/ "{S$path}/www/cgi-bin/"
Each directory to which Apache has access can be configured with respect
to which services and features are allowed and/or disabled in that

directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of
features.

S T

<Directory "C:/Program Files (x86)/Ampps/apache/htdocs">
Options ExecCGI
AllowOverride None
Order allow,deny
Allow from all
</Directory>

Restarting the Apache Web Server

Once the configuration is complete you have to restart the Apache Server, this is done by
again pressing the settings cog in Ampps and then press the restart button

f‘ dmMpps

Powered By Softaculo

Figure 32 Restart server button

At this point you should be ready to start writing, running, and debugging SIMPOL web
server programs. Before you go any further however, you should open your browser and
enter the URL http://localhost/. If you don’tsee a screen like the one below, you may
have made an error in your configuration of the Apache web server. You will need to correct
that before you can go on. Check the Apache documentation, and look at the log files. They
may tell you what is wrong.

localhost/ X +

« = G @ (D localhost

It works!

Figure 33 Test screen for Apache

http://localhost/
http://localhost/

Debugging and Running Your Program

Finally, we are just about ready to actually run our web server program. There is only a little
more preparation left to do so that we can run our program. First, to make our lives simpler,
we need to add a secondary target for the build process. We do that by opening the Project
Settings window and this time selecting the third tab labelled Targets, as shown in the picture
below:

Project Settings X
General | Includes and lbraries Targets | CGI |

Targets: Edit/Add Target | Remove Target

Active Target ShebangLine

Conce

Figure 34 Project Settings Targets tab

Click on the Edit/Add Target button. This displays the Target Manager window. On the left
side of the window is a place to store common target directory names. On the right is a place
to store common shebang lines.

Now you need to find the cgi-bin in your apache setup (this is your target folder for both the

debugging and actual running of the software). For AMPPS this is normally found under:
C:\Program Files (x86)\Ampps\www\cgi-bin\

What's a shebang line?

In some operating systems, most notably UNIX, Linux, and now Mac OS-X, it is common
to place a special type of comment at the beginning of a script that is marked as executable
by the operating system. This comment must be the first line of the script and begins with a
comment symbol, the hash mark (#) followed by the exclamation point symbol (!)
(sometimes called the bang symbol — presumably from its use in comic books). This
combination the "hash bang" has come to be known as the shebang. Directly following this
character combination is the path and file name of the program that should be used to
execute the script that follows. Programs that are aware of this convention and which
support it can use this method of determining the correct processing program so that the
script name alone is sufficient to run the script. The line must end with an end of line
character that is correct for the target platform. On Windows and DOS machines this is the
carriage return linefeed combination 0x0DO0x0A. On UNIX, Linux, and Mac OS-X this is
0x0A alone.

Create a target such as the one shown in the picture below. You may wish to add the target
directory and shebang lines to the lists since you will probably use them often. In this case we
are creating a debug target. The program called sbngidecaller.exe is used to make direct
callbacks into the IDE.

| Target Manager x|
Target Folder List: Remove | Shebang Line List femove |
C: \Program Files kB NAMpDT wewass "1k o
C\SIMPOLABN
Remember to activate target
Target Folder Shebang Line:
| [E\Program Fies (486 NAmpos\wwhc b .| [WE\SIMPOL b stgafBec.ater eveldiial

Audd 1o kit

Target File Name: [learrili2 smp

Figure 35 Creating our debug target for learn02.smp

The shebang line is: #!C:\SIMPOL\bin\sbngidecaller.exe{d}{a}

The Target file name should be the same as the program, even if just to avoid confusion.
Don't forget to activate the target! Then click the OK button to create the target and then the
OK button to save the changes. Finally, press Ctrl+B to rebuild the project and create the
secondary target.

Project Settings x
General | Includes and lbraries Targets | CGI |

Targets: Edit/Add Target | Remove Target |

Active Target Shebanaline
C:\Program Files ahegi-bintleanZ. APOL\bin\sbngidecaller.exe{d}a)

Figure 36 Project Settings showing the debug target active

Now open a browser window and go to the following web address:
http://localhost/cgi-bin/learn02.smp

http://localhost/cgi-bin/learn02.smp

The-fiotbewing box should then pop-up, press yes. X
C:\Program File
CASIMPOL\G —

Request from web server to debug “C\Program Files
(x86)\Ampps\www\cgi-bin\learn02.smp",
Should the request be accepted?

Target Folder:

J IC:\Plogmrn Files [«BENAmooswwwica-bin' 1 IRIEASIMPOL shindempem3? exetdHat
Figure 37 Request to debug program

Add to list
This message is from the IDE indicating that it has received a request to debug a program. If
that prograreei§aiorthecirent one in your IDE th&ctarent project will Be cldsed afrd-the |
project associated with the program to be debugged will be opened. At this point everything
runs exactly the same as when debugging normally.

Simply press F5 to let the program just run through (this is where any bugs should turn up)

Once the debug has finished it will take you back to the browser, displaying an Internal
Server Error. This is normal as we have only given it a debug not executed it properly

Now to display it in the webpage we need to add a second target, to do this again go to the
project settings and click on the blank space

Project Settings X

General | Includes and lbraries Targets | CGI |

Targets: Edit/Add Target | Remove Target

Active | Target | Shebanaline
C:\Program Files [x86)\4mppswawwicgirbinileam02.smp | #ICASIMPOL\bin\sbngidecaller. exe{dHa}

C ok | coon |

Figure 38 Project Settings Target for creating Second Target

Then press “Edit/Add Target” click on the target address we used previously but add the
following shebang line: #!C:\sIMPOL\bin\smpcgi32.exe{d}{a}

Again remember to tick Activate Target and then click the OK button to create the target and

then again to save the changes. The project settings should now look like this. Now all you
need to do is to rebuild the project.

Project Settings X

General | Includes and lbraries Targets |CGI |

Tangets: Edit/Add Target | Remove Target

Active | Target | ShebanaLine
v ibintleam02.smp | HIC:ASIMPOLbintsbngidecalle

Figure 39 Target Manager settings for deployment target

Note

If more than one copy of the Superbase NG IDE are running concurrently then the first
window that pops up will not be from the IDE about a request to debug, it will be from the

sbngidecaller.exe program asking which copy of the IDE should receive the request to
debug.

Select the appropriate entry and then the debugging request message will appear.

Now you can go back to the browser and refresh the page. It should now execute the program
and display the time and date (the exact time and date will of course be different for you)

@ R C' @ @ localhost/cgi-bin/learn02.smp

The current date and time are: June 20 2018 10:49:22.016 am

Figure 40 learn02 successful execution

Optionally, you can now deactivate the debug target as it is no longer necessary

Summary
In this part we have learned how to:
e Save an existing project as a new project

e Add an external source file to our program with the include statement
e Add include directories to our project definition

e Useaconstant in our code

o Convert a program to work as a web server application

o Retrieve, install, and minimally configure the Apache web server
e Work with targets in the IDE

e Debug a web server application

In the next part we will learn about debugging into the source code projects provided for most
of the SIMPOL libraries.

Debugging Into Library Source Code

In the first part, we built our first basic program in SIMPOL and learned how to use the IDE
to do various tasks, including basic debugging. In this part, we will learn how to debug into
the source code of one of the supplied libraries.

Debugging Revisited

Debugging a program is an important aspect of the development process. Since so many parts
of Superbase NG are delivered as libraries, it is important to be able to assess what happens
to your program when it goes into one of those libraries, especially if you think that there is a
flaw in the library itself. Another important aspect is to learn how the libraries are written,
and see how they work. This can be a useful tool for learning about the programming
language. Using the Superbase NG IDE you can debug into any library for which the source
code (as a project) is available.

Adding Library Source Code

We are going to be using the project learn01, so we should open this. First close whatever
your current project is (File>Close Project). Now open learn01.smp (File>Open Project)

To add source code from another project to the current one, in the project tree view right-
click the root node and select “Import Modules From Project”

3_._@ Superbase NG IDE - [learn01 - learn(1]
File Edit View Document Project Debug Tools

DEEJ RE S Twad

hd . |

= Iearr Add New Module f
= Import Modules From Project | i
Build {
Rebuild All 3
Execute ’h
b
|

[function me

£

Settings
4]

Properties

Figure 41 Project context menu

In the resulting window find: c:\sIMPOL\projects\libs\sbldatelib

-E Open SIMPOL Project File

Look in: | sbidatelb

x| & & cF B

Name Date modified Type Size
| bin 06/06/2018 13:25 File folder
sbidatelib 06/06/2018 13:25 File folder
{08 sbidatelib 06/06/2018 13:25 Superbase NG pro.., 1KB

File name: |sbldatdb

Files of type: | SIMPOL Project Files (* smj)

Figure 42 Open Project window

And then open the sBLDateLib.smj

This will add the library project into the current project as a module. Projects loaded in this
way cannot be modified, the source code is read-only. Once it has been added, the IDE will
retrieve the function and type information, and add it to the tree

DEE@ ' B & e o

SEENY XY

=l x|

= P®] leam01.smj
= ™ leam01
=] leam01.sma
& P* SBLDatelib

Figure 43 Project after importing a module for debugging

[function main ()
datecime dt

SBLlocaledateinfo

el S et e el | - Al

ldiLocal
integer iMicrosecondsinada

ldilocals =@ SBLlocaledatcs
iMicrosecondsinaday =

dt = dacecim=.new()

s = DATESIR (dace.new(dt/iHM
TIMESTR (cim=.newidt mo

end function s

Now that the project code has been imported, we can now open the source file in the editor.
First expand the entry for sBLDatetLib and then double click on sBLDateLib. sma.

To debug inside the call to the library function we will place a break point at the beginning of

the function where indicated below. This is done by clicking on the line and pressing F9 (or
Debug>Insert/Remove Breakpoint).

DEE@ ' B8 (& PRad| o MRAK AR BED

4+ | x|
Ieamﬂ‘l.smj f/ string — This will be either "", some stri
a Ieamﬁﬂ // one or more times, or ?'r_:_ ?ate formatted a
= leam01.sma ,: .f.:r_rr__at string and 1:"-': _:-::'_:E inf r"r.'..:'-ft,?:‘.. P
= ¥ SBLDatelib R A A A s B A o MBI 0 4 L T A It
] SBLDatelib.sma
function DATESTR (date dt, =tring format,
string tmp, £, tmp2, lformat, tmp3
string retval
integer i, 1, iPos, iXtraSeps
function dispf

poolean done, bDays, bMonths, bYears
sol=an bdayz, bmonthz, byearfirst

@ Ilf ldilLocale == ,nul

ldilLocale =@ S5BLlocaledateinfo.new()
end if
retval = """

Figure 44 Setting a break point in a library function

To enter debugging press F4. Then press FS to run through the program. Program execution
should halt with the line containing the break point highlighted, as shown below:

D@ B0 & Thad | o= MRA 440 NA

2 2] x|
leam01.smj [/ string - Thia will be either "": some
= P9 leam0]1 // one or mores times, or ?re date formatct
= feam01 sma KRR SAETUY S SNC Sens e N
: BSELDEfEUb Fr PP rrrrrrrrrrrrrrrrr A rrrrFrr Sl r Nl
= SBLDatelib sma
function DATESTR (date dt, =tring formart,
string tmp, £, tmp2, lformat, tmp3
Itring retval
integer i, 1, iPos, iXtraSeps
function dispf

soolesan done, bDays, bMonths, bYears
colsan bdayz, bmonthz, byearfirst

@ :
ldiLocale =@ 5SBLlocaledateinfo.new|()
end if
retval = "»

Figure 45 Code execution halted at the break point

At this point, we can start single-stepping through the code (using F11), examine the
variables, and evaluate what is happening to the code. In the beginning of the function most
of the variables will be equal to . nul, since they have been declared but nothing has yet
been assigned to them.

Tip

If you are debugging code that is working with a multi-threaded system, such as
that provided by the SIMPOL Application Framework, then you may need to switch
to the correct thread before any debugging commands will work or the variables are
shown in the list. To do this select Debug — Thread Manager and in the window
select the correct thread, then click on the Set Focus button.

Thread Managers A

Thread ID Suspsnd Locazion

Figure 46 Thread Manager dialog window

Further into the function, as shown in the following image, the variables can be seen to the
right in the watch window and the call stack is shown in the window below that.

3 e o

[P Bt ww Docemant Frojt Debag Tech Wmdow teip _imin

CEE0 @ &e & Thed | @« MARE | 4000 FuU e BTENe | B LB
— - =i = il
[T — sliw 2f EDays and EMeoths ahd bBYears and .ineic|Pesgmt, e 5
. .-;'m“h) G zhis cume uwe will fuas o thing Faie: [veiua H
= aaniisre by T
& I SELDmsi J4 IC che ehar 1isg, whes it i3 & s=por(l) Eionthe e
= san — elee :' Lnary vt (L1
Ly s it a4 mp L Sial =EI FO SUTELT WOk W ZaTe
tmpd =~ disgpfidc, I. 1dilacmle, iPam, Eyearficec) otz Inlje
Firns w= have oo =sta0lish wiecher shers 18 onl e oA o iz Inize
£ [Eppmmrtint talae
gt dokysc releacancs: SEL
anfg Takae
ot Sobjoc] mimrca: T
L mmTemn
) erorimom dil
i 5
iFos 2
ol Sy o
: [1
M Taepy = AtpaSEpE’ Imlocala sobyec ieleancay
=lam Horrrest rramumn Ao,y
GEE = TEDE - el
f ™ : tmi 1|
o8 vt tne [WCTprvem || et e [bl | ZE) E| |
=i = |8]s baTESTR - M:\armpoliproieccs)libsy=SlDeceiit’SSiOecelik\=Hiles =
A ramemas s R R RS RS R R R R R R R R AR R R Er 4 mEin - Eiheispoliproiscoelcocorisl’ isecnilhisarnilleereo] , ems
B et S 1. 051 TS R FU-E-T5-1. 1 F R e
Starz dabug mode y
Thread "1" scarte I
Thread *i® szpppsd in fumcTion "DATESTE®)
sl e dser s’ 1 ke S5 LOar el Lk SSLharal 10 SHE e eLin . pma (8 ¢
4[4 R T Dt Debag | FidnFes | 1 | A —_— i
Al R Cal 3 |

Figure 47 Debugging show the variables and call stack

By double-clicking on a function further down the call stack, the point in the code that called the next
function further up the call stack can be displayed, and the state of the variables in that function can
be shown.

{3 pe Eiv Wew Docement Broject Drbog Teok Window i -lEm
DFEd He 8 tRead - RAR A0k LEEG DR Eae | 2| LB
= = - s
W || [P D |l Tiake B
| Er:mr-l-- BLIocad=dn i laiLoeale it ol fed pafiance §34
SELDwalls M1 prEsacens i nadEy Miccsacandmacsyy BEIDI00NBI0
[SH sl Ilocsle <ohpc remenoes
ldatocals =§ sleilmiwi=ty newil " P

iMicreeasonndninaday =

ar s§ o4 - Pt |
dE . awt e |

I S Tt — “Pliseritt e [08L0we1n O lf

= DATEETN = fs\sispeliprojects'libs\SBC0etelin' SHLOarelin' SRLIGL =

- !j
R T e e e e L Rttt s a

e C PR T TH & LT LR L
LAt SEbug Scse

Thraad "1 staris ;J
Thread "1™ stopped in fusction "ODRTESTR™:

Wi veeppoliproieste libe \ SRLIac e ik SALDecalib SULDeselin. . sma {83 j: T
Ak e o) owlug f Frdnriee | | L] ™ Ml .
LT Lnid ol dd

Figure 48 Debugging showing the variables at a different call stack position

Removing Library Source Code

Once the debugging exercise with the library source code is complete, it is beneficial to
remove the project from the tree, since each time debugging is entered, the IDE must analyze
the source code from the library project as well as the development project, which slows
down development. To remove the project, right-click on the module node in the project tree,
and select the menu item Remove Module from the pop-up menu.

=B sumertbiase 1G IDE - [feami - leamat)

j e Edsd WView Docurmest ll'lu_lgn_l llqbu; Tools 'Window Help
PFED B & TRad MERA 4
x | ——
[function ma _T
= M lsamit % .
[leamil sma Filocals
- {i crosscondsinaday
E . friooale =W
ferrrve Module H azond ia
24 e
B 1
roperte k.ow

K
" 8 epeiview [Rermven [| Blieemtt s [Else0mmia |

Figure 49 Removing the imported source code module

Summary

In this part we have learned how to:
e Import a library project to allow debugging into its source code
e Use the Thread Manager to select the correct thread

e Remove a library project module once it is no longer required

Now its time to open up some of the sample projects and try them out. Have fun!

